

EVALUATING PREDICTORS OF SpCas9 GUIDE RNA PERFORMANCE

1. INTRODUCTION

- Understanding the features which dictate CRISPR guide behavior remains an outstanding problem in the field of genome editing
- We combined data from multiple sources and built a novel CRISPR guide scoring function, Dunne 2017
- We compared Dunne 2017 to others using Spearman's Correlation Coefficient to test the quality of the ranking, and Coefficient of Determination to test the accuracy of the predicted log2 fold change
- With a better understanding of what factors affect the performance of a guide, we can design smaller but more effective libraries, ultimately reducing costs

Mark Dunne¹, Neil Humphryes-Kirilov¹, Søren Hough¹, **Riley Doyle¹**

¹Desktop Genetics, London, UK || Contact: crispr@deskgen.com

3. SEQUENCE FEATURES

Single base weights in Humans

- Our model found different weights for nucleotide identity and position as compared with older algorithms
- Guide performance is determined primarily by nucleotides in the seed region of the protospacer (position 15–20)
- G in the seed region is a positive predictor of guide performance
- T in the seed region is a negative predictor of guide performance

4. GENOME-WIDE TARGETING

- Some genes require fewer guides to knock out, while others require more
- More guides are required when there are fewer high-quality guides to choose from
- Ranking guides within a gene is therefore insufficient; a small number of high performance guides can do the work of many low performers

Sample of genes

5. COMPARING SCORING FUNCTIONS

SPEARMAN'S CORRELATION COEFFICIENT

- The quality of guide ranking within genes is not the only important metric
- Spearman's measures how well the features predict guide performance based on ranked guide activity
- Predicting actual guide activity is key to designing more efficient libraries

- By incorporating more features in our algorithm, we can build a better model (Dunne 2017) for predicting the behavior of guide RNAs
- Ranking guides within a gene is insufficient; a small number of high performance guides can do the work of many low performers
- It is important that scoring functions can predict the absolute activity of a guide
- Dunne 2017 outperforms older algorithms measured both by Spearman's Correlation **Coefficient and Coefficient of Determination**

- . Wickham, Hadley. "Tidy data." Journal of Statistical Software 59.10 (2014): 1-23.
- 2. Wang, Tim, et al. "Genetic screens in human cells using the CRISPR-Cas9 system." Science 343.6166 (2014): 80-84.
- systems biology 10.7 (2014): 733.
- 4. Doench, John G., et al. "Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation." Nature biotechnology 32.12 (2014): 1262-1267.
- 5. Doench, John G., et al. "Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9." Nature *biotechnology* 34.2 (2016): 184.
- 6. Xu, Han, et al. "Sequence determinants of improved CRISPR sgRNA design." Genome research 25.8 (2015): 1147-1157. 7. Kim, Daesik, et al. "Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells." Nature methods 12.3
- (2015): 237-243.
- 8. Chari, Raj, et al. "Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach." Nature methods 12.9 (2015): 823-826.

Learn more WWW.DESKGEN.COM

COEFFICIENT OF DETERMINATION

- Coefficient of Determination explains how much of the variance can be explained by the model
- With better prediction of *actual* guide activity, we can reduce the minimum necessary number of guides for successful gene knockout

6. CONCLUSIONS

7. REFERENCES

3. Hart, Traver, et al. "Measuring error rates in genomic perturbation screens: gold standards for human functional genomics." Molecular