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5. COMPARING SCORING FUNCTIONS

1. INTRODUCTION 3. SEQUENCE FEATURES

Single base weights in Humans

» Understanding the features which dictate CRISPR guide behavior Protospacer SPEARMAN’S CORRELATION COEFFICIENT COEFFICIENT OF DETERMINATION
remains an outstanding problem in the field of genome editing o | [ e . -  The quality of guide ranking within genes is not  * Coefficient of Determination explains how
* \We combined data from multiple sources and built a novel CRISPR the only important metric much of the variance can be explained by
guide SCOring funCtion, Dunne 2017 % hymine . Spearman’s measures how well the features the moael
| | ol S | predict guide performance based on ranked » With better prediction of actual guide activity,
* We compared Dunne 2017 to others using Spearman’s Correlation - \ quide activity we can reduce the minimum necessary

Coefficient to test the quality of the ranking, and Coefficient of
Determination to test the accuracy of the predicted log2 fold change
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Base weight (higher is better)

» With a better understanding of what factors affect the performance

Spearman's Correlation by scoring function
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of a guide, we can design smaller but more effective libraries, 02| CUANTE I—
ultimately reducing costs
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2. ANALYSIS OVERVIEW » Our model found different weights for nucleotide identity and position as
compared with older algorithms .
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» Guide performance is determined primarily by nucleotides in the seed —
region of the protospacer (position 15-20)

SUBLISHED * G In the seed region is a positive predictor of guide performance
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4. GENOME-WIDE TARGETING
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6. CONCLUSIONS
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TRANSFORM DATA INTO TIDY * Some genes require fewer guides to knock out, while others require more

Kernel density estimate of essential and non-essential log2 fold changes
DATA" FORMAT

* By incorporating more features in our algorithm, we can build a better model (Dunne 2017) for
predicting the behavior of guide RNAs
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' NortEssenie] * More guides are required when there are fewer high-quality guides to - Ranking guides within a gene is insufficient; a small number of high performance guides can
03 choose from do the work of many low performers
MAP GUIDES TO GENOME AND 7 » Ranki ides within a gene is therefore insufficient; a small number of
CALCULATE FEATURES . anking gul J ’ » |t is important that scoring functions can predict the absolute activity of a guide
o high performance guides can do the work of many low performers

* Dunne 2017 outperforms older algorithms measured both by Spearman’s Correlation
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